Essential Role of the Small GTPase Ran in Postnatal Pancreatic Islet Development
نویسندگان
چکیده
The small GTPase Ran orchestrates pleiotropic cellular responses of nucleo-cytoplasmic shuttling, mitosis and subcellular trafficking, but whether deregulation of these pathways contributes to disease pathogenesis has remained elusive. Here, we generated transgenic mice expressing wild type (WT) Ran, loss-of-function Ran T24N mutant or constitutively active Ran G19V mutant in pancreatic islet β cells under the control of the rat insulin promoter. Embryonic pancreas and islet development, including emergence of insulin(+) β cells, was indistinguishable in control or transgenic mice. However, by one month after birth, transgenic mice expressing any of the three Ran variants exhibited overt diabetes, with hyperglycemia, reduced insulin production, and nearly complete loss of islet number and islet mass, in vivo. Deregulated Ran signaling in transgenic mice, adenoviral over-expression of WT or mutant Ran in isolated islets, or short hairpin RNA (shRNA) silencing of endogenous Ran in model insulinoma INS-1 cells, all resulted in decreased expression of the pancreatic and duodenal homeobox transcription factor, PDX-1, and reduced β cell proliferation, in vivo. These data demonstrate that a finely-tuned balance of Ran GTPase signaling is essential for postnatal pancreatic islet development and glucose homeostasis, in vivo.
منابع مشابه
PDX1 in Ducts Is Not Required for Postnatal Formation of β-Cells but Is Necessary for Their Subsequent Maturation
Pancreatic duodenal homeobox-1 (Pdx1), a transcription factor required for pancreatic development and maintenance of β-cell function, was assessed for a possible role in postnatal β-cell formation from progenitors in the pancreatic ducts by selectively deleting Pdx1 from the ducts. Carbonic anhydrase II (CAII)(Cre);Pdx1(Fl) mice were euglycemic for the first 2 postnatal weeks but showed moderat...
متن کاملDoes the Relief of Glucose Toxicity Act As a Mediator in Proliferative Actions of Vanadium on Pancreatic Islet Beta Cells in Streptozocin Diabetic Rats?
Background: Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Methods: Rats were divided into five groups of normal and diabetic. Diabetes ...
متن کاملImmunohistochemical characterization of pancreatic duodenal homeobox protein-1, neurogenin-3 and insulin protein expressions in islet-mesenchymal cell in vitro interactions from injured adult pancreatic tissues: a morphochronological evaluation
Objective(s): The use of a co-culture of islets with mesenchymal stromal cells (MSCs) is a promising therapy in islet transplantation to revert hyperglycaemia, but the resulting insulin-producing cells (IPCs) express low levels of pancreas endocrine developmental genes. This study aims to investigate the morphochronology of a co-culture of islets with MSCs from injured adult pancreata, and char...
متن کاملاستفاده از مهار کننده فاکتور نسخهبرداری NF - κB در جزایر پانکراس
Background: Pancreatic islet transplantation has been reported as an appropriate method for treatment of type I diabetes patients, however there are strong indications that cytokine and chemokines secreted from transplanted islets play an important role in islet graft rejection in different stage post-transplantation. The NF-kB signaling pathway is activated in response to the stress resulted f...
متن کاملDistinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets.
While much is known about the molecular pathways that regulate embryonic development and adult homeostasis of the endocrine pancreas, little is known about what regulates early postnatal development and maturation of islets. Given that birth marks the first exposure to enteral nutrition, we investigated how nutrient-regulated signaling pathways influence postnatal islet development in mice. We ...
متن کامل